affine variety - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

affine variety - traducción al ruso

ALGEBRAIC VARIETY DEFINED WITHIN AN AFFINE SPACE
Affine varieties; Affine algebraic variety; Coordinate ring; Affine algebraic set; Ring of regular functions; Affine coordinate ring
  • A [[cubic plane curve]] given by <math>y^2 = x^2(x+1)</math>
  • ''y''<sup>2</sup>&nbsp;{{=}}&nbsp;''x''<sup>3</sup>&nbsp;−&nbsp;''x''<sup>2</sup>&nbsp;−&nbsp;16''x''.}}

affine variety         

математика

аффинное многообразие

coordinate ring         

математика

координатное кольцо

quasiprojective variety         
LOCALLY CLOSED SUBSET OF PROJECTIVE SPACE
Quasiprojective; Quasi-projective; Quasi-affine variety; Quasi affine variety; Quasi-projective scheme; Quasiprojective variety; Quasi-projective varieties; Quasiprojective varieties; Quasiaffine variety

математика

квазипроективное многообразие

Definición

Аффинные преобразования

точечные взаимно однозначные отображения (См. Отображение) плоскости (пространства) на себя, при которых прямые переходят в прямые. Если на плоскости задана декартова система координат, то любое А. п. этой плоскости может быть определено посредством т. н. невырожденного линейного преобразования координат х и у точек этой плоскости. Такое преобразование задаётся формулами х' = ах + + р, y' = cx + dy + q с дополнительным требованием

Аналогично, любое А. пространства может быть определено при помощи невырожденных линейных преобразований координат точек пространства. Совокупность всех А. п. плоскости (пространства) на себя образует группу (См. Группа) А. п. Это означает, в частности, что последовательное проведение двух А. п. эквивалентно некоторому одному А. п.

Примерами А. п. могут служить ортогональное прообразование (это преобразование представляет собой движение плоскости или пространства или движение с зеркальным отражением); преобразование подобия; равномерное "сжатие" (рис.). Равномерное "сжатие" с коэффициентом k плоскости π к расположенной на ней прямой а - преооразование, при котором точки а остаются на месте, а каждая не лежащая на а точка М плоскости π смещается по лучу, проходящему через М перпендикулярно а, в такую точку M', что отношение расстояний от М и М 'до а равно k; аналогично определяется равномерное "сжатие" пространства к плоскости. Всякое А. п. плоскости можно получить, выполнив некоторое ортогональное преобразование и последовательное "сжатие" к некоторым двум перпендикулярным прямым. Любое А. п. пространства можно осуществить посредством некоторого ортогонального преобразования и последовательных "сжатии" к некоторым трём взаимно перпендикулярным плоскостям. При А. п. параллельные прямые и плоскости преобразуются в параллельные прямые и плоскости. Свойства А. п. широко используются в различных разделах математики, механики и теоретической физики. Так, в геометрии А. п. применяются для т. н. аффинной классификации фигур. В механике А. п. пользуются при изучении малых деформаций непрерывной сплошной среды; при таких деформациях малые элементы среды в первом приближении подвергаются А. п.

Лит.: Мусхелишвили Н. И., Курс аналитической геометрии, 4 изд., М., 1967; Александров П. С., Лекции по аналитической геометрии, М. , 1968; Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961.

Э. Г. Позняк.

Аффинное преобразование плоскости (равномерное сжатие и растяжение).

Wikipedia

Affine variety

In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field k is the zero-locus in the affine space kn of some finite family of polynomials of n variables with coefficients in k that generate a prime ideal. If the condition of generating a prime ideal is removed, such a set is called an (affine) algebraic set. A Zariski open subvariety of an affine variety is called a quasi-affine variety.

Some texts do not require a prime ideal, and call irreducible an algebraic variety defined by a prime ideal. This article refers to zero-loci of not necessarily prime ideals as affine algebraic sets.

In some contexts, it is useful to distinguish the field k in which the coefficients are considered, from the algebraically closed field K (containing k) over which the zero-locus is considered (that is, the points of the affine variety are in Kn). In this case, the variety is said defined over k, and the points of the variety that belong to kn are said k-rational or rational over k. In the common case where k is the field of real numbers, a k-rational point is called a real point. When the field k is not specified, a rational point is a point that is rational over the rational numbers. For example, Fermat's Last Theorem asserts that the affine algebraic variety (it is a curve) defined by xn + yn − 1 = 0 has no rational points for any integer n greater than two.

¿Cómo se dice affine variety en Ruso? Traducción de &#39affine variety&#39 al Ruso